

Palladium-Catalyzed Cross-Coupling of Electron-Poor Terminal Alkynes with Arylboronic Acids under Ligand-Free and Aerobic Conditions

Ming-Bo Zhou, Wen-Ting Wei, Ye-Xiang Xie, Yong Lei, and Jin-Heng Li*

Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China

jhli@hunnu.edu.cn

Received June 1, 2010

Palladium-catalyzed cross-coupling reaction of terminal alkynes with arylboronic acids has been described. In the presence of $Pd(OAc)_2$ and Ag_2O , a variety of terminal alkynes, including electronpoor terminal alkynes, smoothly underwent the reaction with numerous boronic acids to afford the corresponding internal alkynes in moderate to good yields. Moreover, this methodology was applied to the synthesis of 1*H*-isochromenes and diynes. It is noteworthy that the reaction proceeds under ligand-free and relative lower loading Pd conditions, and the maximal TONs (turnover numbers) of the reaction are up to 720,000.

Introduction

The alkyne skeleton is a prevalent motif found in many naturally occurring products¹ and materials.² Among the

cross-coupling reaction represents the most straightforward and efficient tool and has been widely explored since it was reported by Sonogashira, Cassar, and Heck independently.^{3–5} Although many modified transformations have been reported for these purposes,^{3–5} some limitations still remained: electron-poor alkynes usually give unsatisfactory results from the reaction with aryl halides. To overcome these limitations, Zou and co-workers reported a procedure for constructing internal alkynes through the cross-coupling of terminal alkynes with arylboronic acids using a palladium/silver system (eq 1, Scheme 1).⁶ In the presence of (dppf)PdCl₂ and Ag₂O, terminal alkynes including an electron-poor alkyne (ethyl propiolate) underwent reaction with arylboronic acids at room temperature for 20–30 h, providing the corresponding

methods for constructing this skeleton, the Sonogashira

DOI: 10.1021/jo101063p © 2010 American Chemical Society Published on Web 07/22/2010

⁽¹⁾ For reviews, see: (a) Bohlmann, F.; Burkhart, F. T. Zero, C. Naturally Occurring Acetylenes; Academic: London, 1973. (b) Hunstman, V. D. The Chemistry of the Carbon–Carbon Triple Bond; Patai, S., Ed.; Wiley-Interscience: London, 1978; p 553. (c) Nicolaou, K. C.; Bulger, P. G.; Sarl-ah, D. Angew. Chem., Int. Ed. 2005, 44, 4442.

⁽²⁾ For selected reviews and papers, see: (a) Bunz, U. H. F. Chem. Rev.
2000, 100, 1605. (b) Tour, J. M. Acc. Chem. Res. 2000, 33, 791. (c) Siemsen,
P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39, 2632.
(d) Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38, 1350.

⁽³⁾ For selected reviews, see: (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467. (b) Sonogashira, K. In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; p 203. (c) Moore, J. S. Acc. Chem. Res. 1997, 30, 402. (d) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46. (e) Tykwinski, R. R. Angew. Chem., Int. Ed. 2003, 42, 1566. (f) Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979. (g) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; Diederich, F., de Meijere, A., Eds.; Wiley-VCH: Weinheim, 2004. (h) Transition Metals for Organic Synthesis; Building Block and Fine Chemicals, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004. (i) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442. (j) Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133. (k) Doucet, H.; Hierso, J.-C. Angew. Chem., Int. Ed. 2007, 46, 834. (l) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.

^{(4) (}a) Diek, H. A.; Heck, F. R. J. Organomet. Chem. 1975, 93, 259.
(b) Cassar, L. J. Organomet. Chem. 1975, 93, 253. (c) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467. (d) Tang, B.-X.; Tang, D.-J.; Tang, S.; Yu, Q.-F.; Zhang, Y.-H.; Liang, Y.; Zhong, P.; Li, J.-H. Org. Lett. 2008, 10, 1063. (e) Jiang, T.-S.; Zhang, X.-G.; Li, J.-H. Synthesis 2009, 3029. (f) Pinto, A.; Neuville, L.; Retailleau, P.; Zhu, J. Org. Lett. 2006, 8, 4927. (g) Pinto, A.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 3291.

SCHEME 1

ref. 6

internal alkynes in moderate to good yields. However, the reaction required high loading of (dppf)PdCl₂ (5 mol %) and phenylacetylene displayed less activity for the cross-coupling process. Subsequently, Wu and co-workers extended the scope to arylalkynes using the cyclopalladated ferrocenylimine and Ag₂O system (eq 2, Scheme 1).⁷ Although both the aforementioned catalytic systems were efficient and provided an alternative route to internal alkynes, only an electron-poor alkyne was examined and highly expensive palladium–ligand catalytic systems were required.⁸

Generally, *N*,3-diarylpropiolamides can be prepared by the traditional Sonongashira method using electron-poor alkynes and aryl halides as the reaction partners; however, the yields are usually low to moderate based on the properties of both alkynes and aryl halides.⁴ For example, treatment of *N*-methyl-*N*-phenylpropiolamide (**1a**) with iodobenzene, PdCl₂(PPh₃)₂ (5 mol %), and CuI (10 mol %) in Et₃N/THF afforded the desired product **3** in 62% yield at room temperature and 51% at 70 °C (Scheme 2).^{4d-g} However, only a moderate yield was achieved for high active 1-(4-iodophenyl)ethanone under the same conditions. On the other hand, the Sonogashira cross-coupling reactions of ynones with aryl iodides cannot take place under the traditional Sonongashira conditions. To realize these reactions, some special reagents, such as diaryliodonium salts or in situ generated alkynylzinc derivatives, were required.⁹ Thus, the development of a general and ligand-free method for extending the electron-poor alkyne scope is interesting. Here, we report a palladium-catalyzed cross-coupling of terminal alkynes, including electron-poor terminal alkynes, with boronic acids under ligand-free and relatively lower loading Pd conditions (eq 3, Scheme 1). It is noteworthy that the maximum TONs (turnover numbers) of the reaction are up to 720000.

Results and Discussion

The reaction between N-methyl-N-phenylpropiolamide (1a) and phenylboronic acid (2a) was chosen as a model reaction to screen the optimal reaction conditions, and the results are summarized in Table 1. To our delight, treatment of amide 1a with 2a, Pd(OAc)₂ (0.1 mol %), Ag₂O (1 equiv), and CH₃ONa (1 equiv) afforded the desired product 4 in 61% yield after 12 h (entry 1). Identical results were observed at a loading of 0.01 mol % of Pd(OAc)₂ (entry 2). Subsequently, both the amount of Ag₂O and the effect of bases were investigated (entries 3-12). We found that the reaction could not take place without Ag (entry 6), and 1.5 equiv of Ag₂O gave the best results in the presence of 2 equiv of K_2CO_3 base (entry 8). The other bases, including Na₂CO₃, Cs₂CO₃, and KOAc, affected the reaction slightly (entries 9-11). The results demonstrated that a moderate yield was still isolated using Ag₂O alone (entry 12). Two other solvents, *n*-PrCN and toluene, were tested, and they were less effective than MeCN (entries 13 and 14). Among the reaction temperatures examined, 70 °C provided the highest yield (entries 8 and 15-17). While 70 °C afforded the target product 4 in 88% yield (entry 15), both 100 and 50 °C decreased the yield slightly (entries 8 and 16). Gratifyingly, 72% yield of 4 was still achieved at room temperature after a prolonged time (48 h, entry 17). It is noteworthy that satisfactory yield can be obtained for 48 h even at 0.0001 mol % of $Pd(OAc)_2$ (TONs = 720000, entry 18), but no reaction is observed without Pd catalysis (entry 19). Either PdCl₂ or PdCl₂/dppf were suitable catalysts for the reaction, but they were inferior to Pd(OAc)₂ (entries 20 and 21). Finally, four other Ag salts were also evaluated, and they displayed less efficiency by comparison with Ag₂O (entries 22-25).¹⁰ It is noteworthy that in the absence of K₂CO₃ a moderate yield can be isolated using 0.01 mol % of Pd(OAc)₂ and 3.5 equiv of Ag₂CO₃ (entry 25).

As shown in Table 2, the scope of the alkynes and boronic acids was explored under the optimal reaction conditions. Initially, a variety of boronic acids **2** were investigated by reaction with *N*-methyl-*N*-phenylpropiolamide (**1a**) (entries 1-12). The results demonstrated that several functional groups, including methyl, methoxy, fluoro, iodo, formyl, acetyl, nitro, and vinyl groups, on the aryl moiety of substrates **2** were perfectly tolerated. For example, methyl-substituted arylboronic acids **2b**-**d** smoothly underwent

⁽⁵⁾ For selected papers, see: (a) Liang, B.; Dai, M.; Chen, J.; Yang, Z. J. Org. Chem. 2005, 70, 391. (b) Li, J.-H.; Liang, Y.; Xie, Y.-X. J. Org. Chem. 2005, 70, 4393. (c) Li, J.-H.; Hu, X.-C; Xie, Y.-X. Tetrahedron 2006, 62, 31. (d) Li, J.-H.; Li, J.-L.; Wang, D.-P.; Pi, S.-F.; Xie, Y.-X.; Zhang, M.-B.; Hu, X.-C. J. Org. Chem. 2007, 72, 2053. (e) Cheng, J.; Sun, Y.; Wang, F.; Guo, M.; Xu, J.-H.; Pan, Y.; Zhang, Z. J. Org. Chem. 2004, 69, 5428. (f) Zhang, W.; Wu, H.; Liu, Z.; Zhong, P.; Zhang, L.; Huang, X.; Cheng, J. Chem. Commun. 2006, 4826. (g) Gelman, D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2003, 42, 5993. (h) Mino, T.; Shirae, Y.; Saito, T.; Sakamoto, M.; Fujita, T. J. Org. Chem. 2006, 71, 9499. (i) Ma, D.; Liu, F. Chem. Commun. 2004, 1934. (j) Thorand, S.; Krause, N. J. Org. Chem. 1998, 63, 8551. (k) Mori, A.; Kawashima, J.; Shimada, T.; Suguro, M.; Hirabayashi, K.; Nishihara, Y. Org. Lett. 2000, 2, 2935. (l) Castanet, A.; Colobert, F.; Schlama, T. Org. Lett. 2006, 73, 548, 133. (n) Monnier, F.; Turtaut, F.; Dupont, J. Adv. Synth. Catal. 2006, 348, 133. (n) Monnier, F.; Turtaut, F.; Duroure, L.; Taillefer, M. Org. Lett. 2008, 10, 3203.

⁽⁶⁾ Zou, G.; Zhu, J.; Tang, J. Tetrahedron Lett. 2003, 44, 8709.

⁽⁷⁾ Yang, F.; Wu, Y. Eur. J. Org. Chem. 2007, 3476.

⁽⁸⁾ For a paper on CuI-catalyzed cross-coupling of arylboronic acids with terminal alkynes, see: Pan, C.; Luo, F.; Wang, W.; Ye, Z.; Cheng, J. *Tetrahedron Lett.* **2009**, *50*, 5044.

^{(9) (}a) Radhakrishnan, U.; Stang, P. J. Org. Lett. 2001, 3, 895.
(b) Anastasia, L.; Negishi, E.-i. Org. Lett. 2001, 3, 3111. (c) Eckert, T.; Ipaktschi, J. Synth. Commun. 1998, 28, 327.

⁽¹⁰⁾ For selected papers on Ag salt-promoted organic reactions, see:
(a) Moreno-Mañas, M.; Pérez, M.; Pleixats, R. J. Org. Chem. 1996, 61, 2346. (b) Zou, G.; Reddy, Y. K.; Falck, J. R. Tetrahedron Lett. 2001, 42, 7213. (c) Satoh, T.; Ogino, S.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. 2004, 43, 5063. (d) Nishihara, Y.; Onodera, H.; Osakada, K. Chem. Commun. 2004, 192. (e) Letinois-Halbes, U.; Pale, P.; Berger, S. J. Org. Chem. 2005, 70, 9185.

SCHEME 2. Controlled Experiments: The Traditional Sonongashira Reaction of N-Methyl-N-phenylpropiolamide with Aryl Iodides

TABLE 1. Screening Optimal Conditions^a

entry	[Pd] (mol %)	[Ag] (mol %)	base (equiv)	solvent	<i>T</i> (°C)	yield (%)
1	$Pd(OAc)_{2}(0.1)$	Ag ₂ O (1)	CH ₃ ONa (1)	MeCN	100	61
2	$Pd(OAc)_{2}(0.01)$	$Ag_2O(1)$	$CH_3ONa(1)$	MeCN	100	60
3	$Pd(OAc)_{2}(0.01)$	$Ag_2O(2)$	$CH_3ONa(1)$	MeCN	100	75
4	$Pd(OAc)_{2}(0.01)$	$Ag_2O(1.5)$	$CH_3ONa(1)$	MeCN	100	75
5^b	$Pd(OAc)_{2}(0.01)$	$Ag_2O(0.5)$	$CH_3ONa(1)$	MeCN	100	40
6	$Pd(OAc)_{2}(0.01)$		$CH_3ONa(1)$	MeCN	100	trace
7	$Pd(OAc)_{2}(0.01)$	$Ag_2O(1.5)$	$CH_3ONa(2)$	MeCN	100	63
8	$Pd(OAc)_{2}(0.01)$	$Ag_2O(1.5)$	$K_2CO_3(2)$	MeCN	100	85
9	$Pd(OAc)_{2}(0.01)$	$Ag_2O(1.5)$	$Na_2CO_3(2)$	MeCN	100	53
10	$Pd(OAc)_{2}(0.01)$	$Ag_2O(1.5)$	$Cs_2CO_3(2)$	MeCN	100	65
11	$Pd(OAc)_{2}(0.01)$	$Ag_2O(1.5)$	KOAc (2)	MeCN	100	72
12	$Pd(OAc)_{2}(0.01)$	$Ag_2O(1.5)$		MeCN	100	63
13	$Pd(OAc)_2(0.01)$	$Ag_2O(1.5)$	$K_2CO_3(2)$	<i>n</i> -PrCN	100	61
14	$Pd(OAc)_2(0.01)$	$Ag_2O(1.5)$	$K_2CO_3(2)$	toluene	100	72
15	$Pd(OAc)_2(0.01)$	$Ag_2O(1.5)$	$K_2CO_3(2)$	MeCN	70	88
16	$Pd(OAc)_2(0.01)$	$Ag_2O(1.5)$	$K_2CO_3(2)$	MeCN	50	84
17^c	$Pd(OAc)_2(0.01)$	$Ag_2O(1.5)$	$K_2CO_3(2)$	MeCN	rt	72
18^{c}	$Pd(OAc)_{2}(0.0001)$	$Ag_2O(1.5)$	$K_2CO_3(2)$	MeCN	70	72
19		$Ag_2O(1.5)$	$K_2CO_3(2)$	MeCN	70	0
20	$PdCl_{2}(0.01)$	$Ag_2O(1.5)$	$K_2CO_3(2)$	MeCN	70	80
21^d	$PdCl_{2}(0.01)$	$Ag_2O(1.5)$	$K_2CO_3(2)$	MeCN	70	76
22	$Pd(OAc)_2$ (0.01)	$AgNO_3(1.5)$	$K_2CO_3(2)$	MeCN	70	66
23	$Pd(OAc)_{2}(0.01)$	AgOAc (1.5)	$K_2CO_3(2)$	MeCN	70	71
24	$Pd(OAc)_{2}(0.01)$	$AgBF_{4}(1.5)$	$K_2CO_3(2)$	MeCN	70	67
25	$Pd(OAc)_{2}(0.01)$	Ag_2CO_3 (3.5)		MeCN	70	67
^a Reaction	on conditions: 1a (0.3 mmol), 2a	(0.36 mmol), base, and solv	vent (2 mL) at 100 °C for 1	12 h. ^{<i>b</i>} For 16 h. ^{<i>c</i>} For 4	¹⁸ h. ^{<i>d</i>} dppf (0.02 mo	1%) was added.

the reaction with substrate 1a, $Pd(OAc)_2$ (0.01 mol %), and Ag_2O (1.5 equiv), and the yields were affected by the steric hindrance in the order **2b** (90%) > **2c** (86%) > **2d** (75%) (entries 1-3). Interestingly, only boronic acid group in substrate 2h could react with alkyne 2a, and the active iodo group was inert under the optimal conditions: this provides an attractive route to introduction of new functional groups in this skeleton (entry 7). We were pleased that substrates 2i and 21, with an active formylaryl or vinylaryl group, were tolerated well (entries 8 and 11). Notably, (E)-prop-1-enylboronic acid (2m) was suitable for the reaction under the optimal conditions (90%, entry 12). Interestingly, two other boronic electrophiles, phenylboronic acid pinacol ester (2n) and $PhBF_{3}K$ (20), were also compatible under the standard conditions (entries 13 and 14). Subsequently, a number of electron-poor alkynes, either amide or ester, were examined in the presence of phenylboronic acid (2a), Pd(OAc)₂ (0.01 mol %), and Ag_2O (1.5 equiv) (entries 15–22). We found that N,N-disubstituted amides 1b-f were successfully reacted with phenylboronic acid (2a) in moderate to good yields (entries 15–19), but N-acetyl-N-phenylamide 1g has no activity under the same conditions (entry 20). Unfortunately, monosubstituted amide **1h** was also inert for the reaction (entry 21). Ester **1i** was tested, and 71% yield was obtained by reacting with phenylboronic acid (**2a**), Pd(OAc)₂, and Ag₂O (entry 22). However, propiolic acid (**1j**) has no activity for the reaction under the same conditions (entry 23). It is noteworthy that ynone (**1k**) can smoothly undergo the reaction with boronic acid (**2k**), Pd(OAc)₂, and Ag₂O in 54% yield (entry 24).⁹

As shown in Scheme 3, a number of aromatic and aliphatic alkynes were initially investigated under standard conditions. In the presence of Pd(OAc)₂ (0.01 mol %), Ag₂O (1.5 equiv), K_2CO_3 (2 equiv), and MeCN (2 mL), phenylacetylene (1j) was a suitable substrate for the reaction with phenylboronic acid (2a), providing the desired product 27 in 74%. However, the reaction of ethynyltrimethylsilane with *p*-tolylboronic acid (2b) was unsuccessful (28). To our delight, aliphatic alkynes, bearing a *tert*-butyl, *n*-pentyl, or cyclopropyl group, were consistent with the standard conditions (29–31). Although the yields were not satisfactory from the reactions of amides 1 with 2-formylphenylboronic

		0	B(OH) ₂ — 2	d(OAc) ₂ , A K ₂ CO ₃ , Me 70 °C, 12	$ \begin{array}{c} g_2 O \\ CN \\ h \end{array} \xrightarrow{O} R' \\ R $		
entry	alkyne 1	boronic acid 2	yield (%)	entry	alkyne 1	boronic acid 2	yield (%)
1	Ph^{-N} (1a)		90 (8)	13	Ph^-N (1a)		70 (4)
2	Ph^{-N} (1a)	$B(OH)_2$ (2c)	86 (9)	14	Ph^{-N} (1a)	PhBF ₃ K (20)	85 (4)
3	$\stackrel{O}{\longrightarrow} =$	B(OH)2	75 (10)	15		(2a)	88 (17)
4	°}_=	(2d) MeO-B(OH) ₂ (2e)	84 (6)	16	O Ph [−] N Bn (1c)	B(OH) ₂ (2a)	93 (18)
5	$\stackrel{Ph-N}{\longrightarrow} (1a)$	OMe	81 (7)	17	$\stackrel{O}{\longrightarrow} = $	B(OH) ₂ (2a)	74 (19)
6	$\stackrel{Ph-N}{\longrightarrow} (1a)$	$F \xrightarrow{B(OH)_2} (2f)$	85 (11)	18	$\sum_{\substack{Et=N\\Et}}^{O} = (1e)$	(2a)	75 (20)
7	$\stackrel{Ph=N}{\longrightarrow} (1a)$	$= B(OH)_2$ (2 b)	82 (12)	19		B(OH) ₂ (2a)	90 (21)
8	$\stackrel{Ph-N}{\longrightarrow} =$	СНО	52 (13)	20	Ph=N	B(OH) ₂ (2a)	trace (22)
9		$O \rightarrow B(OH)_2$ (2i)	92 (5)	21	Ph=N (1h)	B(OH) ₂ (2a)	trace (23)
10	$\stackrel{Ph-N}{\longrightarrow} =$	0 ₂ N	98 (14)	22		(2a)	71 (24)
11		$= B(OH)_2 (2k)$	72 (15)	23 24 ^b	но но (1j)	$B(OH)_2$ (2b)	54 (26)
12	Ph=N (1a)	, , , , , , , , , , , , , , , , , , ,	90 (16)		Ph (1k)	B(OH) ₂ (2k)	
	Ph = N (1a)	/ (2m)					

TABLE 2. The Sonogashira Cross-coupling Reactions of Electron-Poor Terminal Alkynes (1) with Boronic Acids (2) in the Presence of Pd(OAc)₂ and Ag₂O^a

^aReaction conditions: 1 (0.3 mmol), 2 (0.36 mmol), Pd(OAc)₂ (0.01 mol %), Ag₂O (1.5 equiv), K₂CO₃ (2 equiv), and MeCN (2 mL) at 70 °C for 12 h. ^bPd(OAc)₂ (3 mol %).

acid (2i) in the presence of MeOH, two interesting tandem 1H-isochromene products 32 and 33 were obtained in one pot.¹¹

The above results showed that the iodo group was inert under the optimal conditions (entry 7 in Table 2). Thus, this novel methodology was applied to the one-pot synthesis of diynes through a dual Sonogashira cross-coupling process (Scheme 4). Treatment of 4-iodophenylboronic acid (2h) with amides (1a and 1f) or ester (1i), $Pd(OAc)_2$ (0.01 mol %), and Ag₂O (1.5 equiv) first afforded the corresponding iodo-containing products in good yields. Subsequently, the

reactions of iodo-containing products with phenylacetylene were carried out using our previously reported $Pd(OAc)_2/DABCO$ catalytic system,^{5b,12} providing the target diynes in excellent yields.

A possible mechanism as outlined in Scheme 5 was proposed.^{6-8,10} Initially, the reaction between Pd(II) and alkynylsilver or alkyne with the aid of base affords intermediate A. Transmetalation of intermediate A with arylboronic acid 2 subsequently takes place leading to intermediate **B**. Finally, reductive elimination of intermediate **B** gives the desired product and Pd(0) species. Pd(0) species can

(1a)

⁽¹¹⁾ Chandra, A.; Singh, B.; Khanna, R. S.; Singh, R. M. J. Org. Chem. 2009, 74, 5664.

^{(12) (}a) Li, J.-H.; Zhang, X.-D.; Xie, Y.-X. Synthesis **2005**, 804. (b) Luque, R.; Macquarrie, D. J. Org, Biomol. Chem. **2009**, 7, 1627.

SCHEME 3. Reactions of Other Substrates

SCHEME 4. Synthesis of Diynes^a

^aReaction conditions: (i) 1 (0.3 mmol), 2h (0.36 mmol), Pd(OAc)₂ (0.01 mol %), Ag₂O (1.5 equiv), K₂CO₃ (2 equiv) and MeCN (2 mL) at 70 °C for 12 h; (ii) Phenylacetylene (1.5 equiv), Pd(OAc)₂ (0.001 mol %), DABCO (3 equiv), and MeCN (2 mL) at room temperature for 24 h.

SCHEME 5. Possible Mechanism

be readily oxidized by Ag_2O to the active Pd(II) species. Therefore, we deduce at least four roles that Ag_2O plays in the reaction, including the following: (1) base, (2) the reaction partner for the generation of the active alkynylsilver in situ, (3) promoter for the activation of the alkynylpalladium complex A facilitating the transmetalation of aryl group from arylboronic acid, and (4) oxidant to regenerate the active Pd(II) species.

For the synthesis of 1*H*-isochromenes, a possible step was described according to the reported mechanism:¹¹ the corresponding 2-ethynylbenzaldehydes were first generated from the reaction of amides **1** with 2-formylphenylboronic acid (**2i**),

and then nucleophilic addition of MeOH to 2-ethynylbenzaldehydes readily took place leading to the target products.

In summary, we have developed a palladium-catalyzed cross-coupling protocol for selectively preparing internal alkynes. In the presence of $Pd(OAc)_2$ and Ag_2O , a variety of terminal alkynes, particularly electron-poor terminal alkynes, smoothly underwent the reaction with numerous boronic acids to afford the corresponding internal alkynes in moderate to good yields. In comparison with the previously reported results, several features were established: (1) this reaction is general; (2) this reaction is carried out under a relative lower loading Pd conditions: the maximal TONs of the reaction are up to 720,000; and (3) the reaction was applied to the synthesis of 1*H*-isochromenes and diynes.

Experimental Section

Typical Experimental Procedure for the Pd(OAc)₂-Catalyzed Cross-Coupling Reaction. Alkyne 1 (0.3 mmol), boronic acid 2 (0.36 mmol), Pd(OAc)₂ (0.01 mol %), Ag₂O (1.5 equiv), K₂CO₃ (2 equiv), and MeCN (2 mL) were added to a Schlenk tube in turn. Then the solution was stirred at 70 °C for the indicated time (12 h) until complete consumption of starting material as monitored by TLC and GC–MS analysis. After the reaction was finished, the mixture was filtered, extracted with ethyl acetate, and evaporated in vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate) to afford the desired product.

N-Methyl-N,3-diphenylpropiolamide (4):⁴ white solid; mp 65.2–66.3 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.45 (t, J = 7.5 Hz, 2H), 7.40–7.38 (m, 1H), 7.36 (d, J = 7.5 Hz, 2H), 7.34–7.30 (m, 1H), 7.27–7.22 (m, 2H), 7.13 (d, J = 8.0 Hz, 2H), 3.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.3, 143.2, 132.4, 129.9, 129.1, 128.2, 127.9, 127.3, 120.3, 90.8, 82.5, 36.3; IR (KBr, cm⁻¹) 2207, 1634; LRMS (EI, 70 eV) m/z 235 (M⁺, 34), 129 (100).

3-(4-Acetylphenyl)-*N*-methyl-*N*-phenylpropiolamide (5):⁴ pale yellow solid; mp 92.2–93.9 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 8.5 Hz, 2H), 7.47 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.5 Hz, 1H), 7.37 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.5 Hz, 2H), 3.40 (s, 3H), 2.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.0, 153.8, 143.0, 137.4, 132.4, 129.2, 128.3, 128.1, 127.3, 125.0, 89.3, 84.8, 36.3, 26.6; IR (KBr, cm⁻¹) 2222, 1681, 1626, 1594; LRMS (EI, 70 eV) m/z 277 (M⁺, 56), 171 (100), 128 (32).

3-(4-Methoxyphenyl)-*N***-methyl**-*N***-phenylpropiolamide (6):**⁴ pale yellow solid; mp 93.6–94.9 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.45 (t, J = 7.5 Hz, 2H), 7.40–7.35 (m, 3H), 7.07 (d, J = 9.0 Hz, 2H), 6.75 (d, J = 8.5 Hz, 2H), 3.77 (s, 3H), 3.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 160.8, 154.6, 143.3, 134.2, 129.0, 127.8, 127.4 113.9, 112.2, 91.4, 81.9, 55.2, 36.2; IR (KBr, cm⁻¹) 2210, 1636, 1593; LRMS (EI, 70 eV) m/z 265 (M⁺, 33), 159 (100).

3-(2-Methoxyphenyl)-*N***-methyl**-*N***-phenylpropiolamide** (7):⁴ pale yellow solid; mp 86.3–87.8 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.45–7.35 (m, 5H), 7.29 (d, J = 8.5 Hz, 1H), 7.10 (d, J = 7.5 Hz, 1H), 6.82–6.75 (m, 2H), 3.69 (s, 3H), 3.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 161.0, 154.4, 143.2, 134.4, 131.5, 129.0, 127.5, 127.3, 120.2, 110.6, 109.7, 87.7, 86.4, 55.4, 36.4; IR (KBr, cm⁻¹) 2210, 1638, 1581; LRMS (EI, 70 eV) m/z 265 (M⁺, 9), 159 (72), 147 (52), 131 (44), 115 (100).

N-Methyl-*N*-phenyl-3-*p*-tolylpropiolamide (8):⁴ pale yellow solid;mp 84.0–85.3 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.44 (t, *J* = 7.5 Hz, 2H), 7.40–7.35 (m, 3H), 7.03 (s, 4H), 3.39 (s, 3H), 2.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.4, 143.2, 140.4, 132.3, 129.0, 129.0, 127.8, 127.3, 117.2,

91.2, 82.1, 36.3, 21.5; IR (KBr, cm⁻¹): 2231, 1634, 1589; LRMS (EI, 70 eV) *m*/*z* 249 (M⁺, 38), 143 (100), 40 (48).

N-Methyl-*N*-phenyl-3-*o*-tolylpropiolamide (9):⁴ colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.43 (t, J = 7.0 Hz 2H), 7.36 (t, J = 8.0 Hz 3H), 7.24–7.20 (m, 2H), 7.06 (t, J = 7.5 Hz, 2H), 3.38 (s, 3H), 1.92 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.4, 143.3, 141.1 133.1, 129.8, 129.4, 129.3,128.0, 127.5, 125.5, 120.3, 89.8, 86.3, 36.5, 19.9; IR (KBr, cm⁻¹) 2218, 1638, 1581; LRMS (EI, 70 eV) m/z 249 (M⁺, 43), 143 (100), 115 (68).

3-(2,6-Dimethylphenyl)-*N*-methyl-*N*-phenylpropiolamide (10):⁴ white solid; mp 95.4–96.7 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.41 (t, J = 8.0 Hz, 2H), 7.34 (d, J = 7.5 Hz, 3H), 7.09 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 7.5 Hz, 2H), 3.38 (s, 3H), 2.06 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 154.5, 143.4, 141.9, 129.4, 129.3, 128.0, 127.6, 126.6, 120.4, 90.7, 88.7, 36.6, 20.5; IR (KBr, cm⁻¹) 2204, 1634, 1593; LRMS (EI, 70 eV) m/z 263 (M⁺, 22), 157 (100), 128 (40).

3-(4-Fluorophenyl)-*N*-methyl-*N*-phenylpropiolamide (11):⁴ white solid; mp 50.3–51.6 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.46 (t, J = 7.5 Hz, 2H), 7.41–7.35 (m, 3H), 7.13–7.10 (m, 2H), 6.93 (t, J = 8.5 Hz, 2H), 3.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.3, 162.3, 154.1, 143.1, 134.5, 134.5, 129.1, 128.0, 127.4, 115.8, 115.6, 89.7, 82.3, 36.3; IR (KBr, cm⁻¹): 2231, 1638, 1597; LRMS (EI, 70 eV) *m*/*z* 253 (M⁺, 49), 147 (100).

3-(4-Iodophenyl)-*N*-methyl-*N*-phenylpropiolamide (12):⁴ white solid, 54.1–55.6 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 8.5 Hz, 2H), 7.45 (t, J = 7.5 Hz, 2H), 7.40–7.34 (m, 3H), 6.83 (d, J = 7.5 Hz, 2H), 3.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.0, 143.1, 137.6, 133.6, 129.1, 128.0, 127.4, 119.8, 96.5, 89.7, 83.7, 36.3; IR (KBr, cm⁻¹) 2218, 1646, 1593; LRMS (EI, 70 eV) *m*/*z* 361 (M⁺, 64), 255 (100), 128 (46).

3-(2-Formylphenyl)-*N*-methyl-*N*-phenylpropiolamide (13): yellow solid; mp 63.2–64.5 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 9.36 (s, 1H), 7.82 (d, J = 7.0 Hz, 1H), 7.54– 7.45 (m, 6H), 7.37–7.35 (m, 2H), 3.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.5, 153.6, 142.7, 136.8, 134.2, 133.6, 130.3, 129.5, 128.5, 127.4, 126.9, 123.6, 88.4, 85.9, 36.5; IR (KBr, cm⁻¹): 2214, 1699, 1634, 1593; LRMS (EI, 70 eV) *m/z* 263 (M⁺, 10), 234 (100), 101 (67); HRMS (EI) for C₁₇H₁₃NO₂ (M⁺) calcd 263.0946, found 263.0943.

N-Methyl-3-(3-nitrophenyl)-*N*-phenylpropiolamide (14): yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 8.18–8.16 (m, 1H), 7.90 (s, 1H), 7.51–7.44 (m, 5H), 7.39–7.37 (m, 2H), 3.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.5, 147.9, 142.8, 137.8, 129.6, 129.4, 128.4, 127.4, 127.2, 124.5, 122.2, 87.7, 84.3, 36.4; IR (KBr, cm⁻¹) 2210, 1638, 1585; LRMS (EI, 70 eV) *m*/*z* 280 (M⁺, 99), 174 (83), 128 (100); HRMS (EI) for C₁₆H₁₂N₂O₃ (M⁺) calcd 280.0848, found 280.0846.

N-Methyl-*N*-phenyl-3-(4-vinylphenyl)propiolamide (15): colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.47–7.35 (m, 5H), 7.30–7.26 (m, 2H), 7.09 (d, J = 8.0 Hz, 2H), 6.66–6.60 (m, 1H), 5.74 (d, J = 17.5 Hz, 1H), 5.30 (d, J = 11.0 Hz, 1H), 3.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.3, 143.2, 139.0, 135.8, 132.6, 129.1, 127.9, 127.2, 126.0, 119.4, 115.8, 90.8, 83.1, 36.3; IR (KBr, cm⁻¹) 2216, 1642, 1493; LRMS (EI, 70 eV) m/z 261 (M⁺, 4), 253 (49), 147 (100); HRMS (EI) for C₁₈H₁₅NO (M⁺) calcd 261.1154, found 261.1151.

(*E*)-*N*-Methyl-*N*-phenylhex-4-en-2-ynamide (16): colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (t, J = 7.5 Hz, 2H), 7.34 (t, J = 7.5 Hz, 1H), 7.28 (d, J = 8.0 Hz, 2H), 6.05–5.98 (m, 1H), 5.36–5.30 (m, 1H), 3.34 (s, 3H), 1.72 (d, J = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.4, 145.2, 143.1, 129.0, 127.6, 127.1, 108.9, 90.2, 81.0, 36.3, 18.9; IR (KBr, cm⁻¹): 2202, 1626, 1593, 1495; LRMS (EI, 70 eV) m/z 199 (M⁺, 16), 198 (29), 184 (70), 93(100); HRMS (EI) for C₁₃H₁₃NO (M⁺) calcd 199.0997, found 199.0995.

N-(4-Methoxyphenyl)-*N*-methyl-3-phenylpropiolamide (17):⁴ yellow solid; mp 78.4–79.7 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.31 (m, 1H), 7.28–7.23 (m, 4H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 7.5 Hz, 2H), 3.85 (s, 3H), 3.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.0, 154.5, 136.0, 132.3, 130.1, 128.5, 128.2, 120.4, 114.2, 90.8, 82.5, 55.5, 36.5; IR (KBr, cm⁻¹) 2218, 1638, 1507; LRMS (EI, 70 eV) *m*/*z* 265 (M⁺, 34), 159 (100).

*N***-Benzyl-***N***,3-diphenylpropiolamide (18):⁴ pale yellow solid; mp 84.2–85.7 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) \delta 7.36–7.15 (m, 13H), 7.09 (d, J = 8.0 Hz, 2H), 5.00 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) \delta 154.4, 141.6, 136.6, 132.4, 129.9, 128.9, 128.7, 128.6, 128.4, 128.2, 128.1, 127.5, 120.3, 91.4, 82.5, 52.2; IR (KBr, cm⁻¹) 2216, 1634, 1589; LRMS (EI, 70 eV) m/z 311 (M⁺, 39), 129 (100), 91 (44).**

N-Allyl-*N*,3-diphenylpropiolamide (19): white solid; mp 66.3–67.6 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.43–7.39 (m, 3H), 7.33 (t, J = 7.5 Hz, 3H), 7.22 (t, J = 7.5 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 5.92–5.87 (m, 1H), 5.19–5.15 (m, 2H), 4.42 (d, J = 6.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 154.0, 141.8, 132.4, 132.3, 129.9, 129.0, 128.4, 120.4, 118.3, 91.0, 82.6, 51.3; IR (KBr, cm⁻¹) 2221, 1628; LRMS (EI, 70 eV) m/z 261 (M⁺, 14), 232 (19), 129 (100); HRMS (EI) for C₁₈H₁₅NO (M⁺) calcd 261.1154, found 261.1150.

N,*N*-Diethyl-3-phenylpropiolamide (20):¹³ colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 7.5 Hz, 2H), 7.41 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 2H), 3.69–3.65 (m, 2H), 3.50–3.46 (m, 2H), 1.28 (t, J = 7.5 Hz, 2H), 1.18 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 153.9, 132.2, 129.8, 128.4, 120.7, 88.9, 81.8, 43.5, 39.2, 14.3, 12.8; IR (KBr, cm⁻¹): 2213, 1636; LRMS (EI, 70 eV) *m*/*z* 201 (M⁺, 31), 129 (100). **1-Morpholino-3-phenylprop-2-yn-1-one (21):**¹⁴ colorless oil;

1-Morpholino-3-phenylprop-2-yn-1-one (21):¹⁴ colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 7.5 Hz, 2H), 7.43 (m, 1H), 7.37 (t, J = 7.5 Hz, 2H), 3.85 (t, J = 5.0 Hz 2H), 3.76 (t, J = 5.0 Hz, 2H), 3.71 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 153.1, 132.3, 130.1, 128.5, 120.1, 91.2, 80.6, 66.8, 66.4, 47.2, 41.9; IR (KBr, cm⁻¹) 2218, 1626; LRMS (EI, 70 eV) m/z 215 (M⁺, 29), 129 (100).

Ethyl 3-phenylpropiolate (24):¹⁴ yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 7.5 Hz, 2H), 7.47–7.43 (m, 1H), 7.38 (t, J = 7.5 Hz, 2H), 4.32–4.28 (m, 2H), 1.36 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.1, 133.0, 130.6, 128.5, 120.0, 86.0, 80.7, 62.1, 14.1; IR (KBr, cm⁻¹) 2210, 1709; LRMS (EI, 70 eV) m/z 174 (M⁺, 15), 129 (100), 102 (87).

3-(3-Nitrophenyl)-1-phenylprop-2-yn-1-one (26):¹⁵ white solid; mp 142.0–143.6 °C (uncorrected); ¹H NMR (500 MHz) δ 8.53 (s, 1H), 8.34 (d, J = 8.0 Hz, 1H), 8.22 (d, J = 7.5 Hz, 2H), 8.00 (s, d, J = 7.5 Hz, 1H), 7.70–7.64 (m, 2H), 7.56 (t, J = 7.5Hz, 2H); ¹³C NMR (125 MHz) δ 177.4, 148.2, 138.4, 136.4, 134.6, 129.9, 129.6, 128.8, 127.6, 125.2, 122.0, 89.0, 88.0; IR (KBr, cm⁻¹) 2208, 1634; LRMS (EI, 70 eV) *m/z* 251 (M⁺, 73), 223 (100), 176 (53), 177 (31), 128 (45), 77 (49).

223 (100), 176 (53), 177 (31), 128 (45), 77 (49). **1,2-Diphenylethyne** (27):⁴ white solid; mp 59.4–60.3 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.54–7.52 (m, 4H), 7.37–7.32 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 131.6, 128.3, 128.2, 123.3, 89.4; IR (KBr, cm⁻¹) 2216; LRMS (EI, 70 eV) *m/z* 178 (M⁺, 100).

1-(3,3-Dimethylbut-1-ynyl)-4-methylbenzene (28):¹⁶ colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.20 (d, J = 9.0 Hz, 2H), 7.00 (d, J = 7.0 Hz, 2H), 2.25 (s, 3H), 1.24 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 137.3, 131.4, 128.8, 121.0, 97.7, 79.0, 31.1,

27.9, 21.4; LRMS (EI, 70 eV) m/z 172 (M⁺, 40),157 (100), 142 (44).

1-(Hept-1-ynyl)-4-methylbenzene (**30**):⁷ colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 2.38 (t, J = 7.5 Hz, 2H), 2.31 (s, 3H), 1.60 (t, J = 7.5 Hz, 2H), 1.44–1.41 (m, 4H), 0.92 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.3, 131.4, 128.9, 121.0, 89.6, 80.5, 31.1, 28.5, 22.2, 21.3, 19.4, 14.0; LRMS (EI, 70 eV) m/z 186 (M⁺, 33), 157 (33), 142 (38), 131(69), 129 (100).

1-(Cyclopropylethynyl)-4-methylbenzene (**31**):¹⁷ colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, J = 8.0 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 2.23 (s, 3H), 1.37–1.32 (m, 1H), 0.76–0.74 (m, 2H), 0.71–0.70 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 137.3, 131.4, 128.9, 120.8, 92.5, 75.8, 21.3, 8.5, 0.1; LRMS (EI, 70 eV) m/z 130 (M⁺, 100), 115 (65), 74 (53).

3-(4-IodophenyI)-1-morpholinoprop-2-yn-1-one (35): white solid; mp 154.6–155.8 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.73–7.72 (m, 2H), 7.26–7.24 (m, 2H), 3.83–3.81 (m, 2H), 3.76–3.74 (m, 2H), 3.70 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 152.9, 137.8, 133.6, 119.6, 96.8, 90.2, 81.8, 66.8, 66.4, 47.3, 42.0; IR (KBr, cm⁻¹) 2210, 1625; LRMS (EI, 70 eV) *m*/*z* 341 (M⁺, 73), 254 (100), 128 (80); HRMS (EI) for C₁₃H₁₂INO₂ (M⁺) calcd 340.9913, found 340.9910.

Ethyl 3-(4-iodophenyl)propiolate (37):¹⁵ colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 7.0 Hz, 2H), 7.29 (d, J = 7.0 Hz, 2H), 4.32–4.28 (m, 3H), 1.35 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ : 153.8, 137.9, 134.1, 119.1, 97.4, 84.9, 81.8, 62.2, 14.0; IR (KBr, cm⁻¹) 2210, 1712; LRMS (EI, 70 eV) m/z 300 (M⁺, 28), 255 (45), 228 (100).

Typical Experimental Procedure for the Synthesis of 1*H*-Isochromenes. Alkyne 1 (0.3 mmol), boronic acid 2 (0.36 mmol), Pd(OAc)₂ (0.01 mol %), Ag₂O (1.5 equiv), K₂CO₃ (2 equiv), MeCN (2 mL), and MeOH (4 mL) were added to a Schlenk tube in turn. Then the solution was stirred at 70 °C for the indicated time (24 h) until complete consumption of starting material as monitored by TLC and GC–MS analysis. After the reaction was finished, the mixture was filtered, extracted with ethyl acetate, and evaporated in vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate) to afford the desired product.

1-Methoxy-*N***-methyl***-N***-phenyl-1***H***-isochromene-3-carboxamide (32):** yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.45–7.39 (m, 4H), 7.35–7.31 (m, 2H), 7.28 (d, *J* = 7.5 Hz, 1H), 7.17 (d, *J* = 7.5 Hz, 1H), 6.51 (s, 1H), 5.37 (s, 1H), 3.60 (s, 3H), 3.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.3, 161.4, 144.6, 138.6, 134.3, 130.7, 129.9, 129.4, 127.3, 127.1, 123.1, 120.7, 108.6, 89.1, 55.9, 36.9; IR (KBr, cm⁻¹) 1663; LRMS (EI, 70 eV) *m*/*z* 295 (M⁺, 3), 263 (66), 189 (100), 145 (89); HRMS (EI) for C₁₈H₁₇NO₃ (M⁺) calcd. 295.1208, found 295.1204.

N-Benzyl-1-methoxy-*N*-phenyl-1*H*-isochromene-3-carboxamide (33). yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.44–7.42 (m, 2H), 7.34–7.21 (m, 9H), 7.12 (t, J = 8.5 Hz, 3H), 6.53 (s, 1H), 5.34 (s, 1H), 5.15 (d, J = 7.5 Hz, 1H), 4.89 (d, J = 7.5 Hz, 1H), 3.61 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.1, 161.9, 143.1, 138.7, 138.1, 134.3, 130.8, 129.9, 129.2, 128.7, 128.3, 128.3, 127.3, 127.0, 123.1, 120.7, 108.7, 88.9, 55.9, 52.5; IR (KBr, cm⁻¹) 1665; LRMS (EI, 70 eV) m/z 371 (M⁺, 4), 339 (59), 189 (100), 145 (76); HRMS (EI) for C₂₄H₂₁NO₃ (M⁺) calcd 371.1521, found 371.1518.

Typical Experimental Procedure for the Pd(OAc)₂-Catalyzed Sonogashira Cross-Coupling Reaction of Aryl Iodides:^{5b} Iodophenylproiolamides **12**, **35**, or **37** (0.3 mmol), phenylacetylene **1j** (0.45 mmol), Pd(OAc)₂ (0.001 mol %), DABCO (3 equiv), and MeCN (2 mL) were added to a Schlenk tube in turn. Then the solution was stirred at room temperature for the indicated time (24 h) until complete consumption of starting material as monitored by TLC and GC–MS analysis. After the reaction

⁽¹³⁾ Kamijo, S.; Kanazawa, C.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 9260.

⁽¹⁴⁾ Kramer, S.; Dooleweerdt, K.; Lindhardt, A. T.; Rottländer, M.; Skrydstrup, T. *Org. Lett.* **2009**, *11*, 4208.

⁽¹⁵⁾ Savechenkov, P. Y.; Rudenko, A. P.; Vasilév, A. V.; Fukin, G. K. Russ. J. Org. Chem. 2005, 41, 1316.
(16) Vogel, P.; Dubbaka, S.-R. Adv. Synth. Catal. 2004, 346, 1793.

⁽¹⁷⁾ Ye, S.-Y.; Yu, Z.-X. Org. Lett. 2004, 12, 804.

was finished, the mixture was filtered, extracted with ethyl acetate, and evaporated in vacuum. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate) to afford the desired product.

N-Methyl-*N*-phenyl-3-(4-(phenylethynyl)phenyl)propiolamide (34): white solid; mp 102.4.5–103.6 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.55–7.44 (m, 4H), 7.41–7.34 (m, 8H), 7.11 (d, *J* = 7.5 Hz, 2H), 3.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.1, 143.1, 132.3, 131.6, 131.4, 129.2, 128.7, 128.4, 128.0, 127.4, 125.0, 122.7, 120.0, 92.1, 90.3, 88.6, 84.0, 36.4; IR (KBr, cm⁻¹) 2214, 1621; LRMS (EI, 70 eV) *m*/*z* 335 (M⁺, 46), 229 (100), 200 (21); HRMS (EI) for C₂₄H₁₇NO (M⁺) calcd 335.1310, found 335.1312.

1-Morpholino-3-(4-(phenylethynyl)phenyl)prop-2-yn-1-one (36): white solid; mp 146.8–147.5 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ 7.54–7.52 (m, 6H), 7.36 (t, J = 3.5 Hz, 3H), 3.84 (t, J = 5.0 Hz, 2H), 3.76 (t, J = 5.0 Hz, 2H), 3.71(s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ : 153.0, 132.3, 131.7, 131.6, 128.7, 128.4, 125.3, 122.6, 119.8, 92.4, 90.7, 88.5, 82.1, 66.9, 66.5, 47.3, 42.0; IR (KBr, cm⁻¹): 2197, 1617; LRMS (EI, 70 eV) *m/z* 315 (M⁺, 61), 229 (100), 200 (30); HRMS (EI) for $C_{21}H_{17}NO_2$ (M⁺) calcd 315.1259, found 315.1257.

Ethyl 3-(4-(phenylethynyl)phenyl)propiolate (38): white solid; mp 99.5–100.6 °C (uncorrected); ¹H NMR (500 MHz, CDCl₃) δ : 7.56–7.50 (m, 6H), 7.36 (t, J = 3.5 Hz, 2H), 4.32–4.28 (m, 2H), 1.36 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.9, 132.8, 131.6, 131.6, 128.7, 128.4, 125.7, 122.6, 119.1, 92.5, 88.5, 85.4, 82.0, 62.1, 14.0; IR (KBr, cm⁻¹) 2206, 1703; LRMS (EI, 70 eV) m/z 274 (M⁺, 47), 229 (31), 202 (100); HRMS (EI) for C₁₉H₁₄O₂ (M⁺) calcd 274.0994, found 274.0991.

Acknowledgment. We thank the Scientific Research Fund of Hunan Provincial Education Department (No. 08A037) and the National Natural Science Foundation of China (No. 20872112) for financial support.

Supporting Information Available: Copies of spectra. This material is available free of charge via the Internet at http:// pubs.acs.org.